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On the Odd-Symmetry of Minimum
Phase-Only Perturbations '

1. INTRODUCTION

The increasing importance of phased arrays has been accompanied by consider -
able interest in phase-only control of array element weights for adaptive null.ingl-5
and for null synthesis. 6-13 Unlike for combined phase and amplitude control, the
problem of imposing nulls in a linear array pattern with phase-only weight control
is nonlinear and cannot be solved exactly analytically. Approximations and/or
numerical techniques must be employed to calculate the required phase perturbations.

A problem of some practical interest in null synthesis is that of imposing nulls
in a given array antenna pattern at a prescribed set of locations in such a way as to
minimize the effect on the given pattern at other locations. If the given pattern is
real and the weight perturbations are of the element phases only, it is intuitive*
that the perturbed pattern should likewise be real and hence that the phase perturba-

tions be odd-symmetric with respect to a phase reference taken at the center of

(Received for publication 10 Februarv 1983)

"In their basic paper on adaptive nulling with phase-shifters, Baird and Rassweiler1
make an implicit assumption based on intuition that the optimal phase-onlv

4 weights for suppressing noise from a set of specified directions are odd-

.. svmmetric, The coefficients Tk in their Fq. (8) are implicitly assumed to be

real.,

(Ine 10 the large number of References cited above, thev will not be listed here. .
See References, puge 1500 RN
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the arrav, I numerical techniques such as nonlinear programming are used to
compute the desired phase perturbations, the sdd-svmmetry propertv can be used
to reduce the number of independent unknown phases by a factor of a half., Although
‘he odd-svmmetry property of the minimum phase-only perturbations mav be in-
ruitive, nevertheless a prool of this propertv would be desirable.

The principal s>bject of this report is to prove the odd-svmmetry propertyv of
the minimum phase-oniv weight perturbations required to impose a singie null in
a real arrav antenna pattern.  The proof unfortunately does not appear to lend itself
to generalization to the cuse of more than one nuill. However, we present
additional evidence to support the conjecture that the minimum phase -only perturba-
tions are in general odd-svmmetric, and it is hoped that this paper will serve as

a stepping stone to the finding ot a general proof,

2, ANALYSIS

Consider a linear arrav of equispaced isotropic elements (sce Figure 1), The
spacing between the elements is d and the phase reference center is taken to be at
the center of the arrav. l.et a . n 1, 2, ..., N, be the amplitude of the nth array
element, and assume svmmetry of the amplitudes with respect to the reference

center; that is,

n 1,2,...,N. (1)

Figure 1. Geometrv
of Arrayv

—
a
i___

| SN S S AN S A,

Then the arrav field pattern, po(u), is
N 1d u
p, (u) = E a e
[0} n
n 1
where
N -1

T=—— -~(n-1,n 1,2, ..., N

8
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and

u = kd sin 6
with

k = 3"r

and 6 the angle measured from broadside to the array. The {dn! are odd-symmetric
with respect to the phase reference center; that is,

d = -dy ., =L 2 ..., N. (2)

The pattern po(u) is real because of the symmetry of the |an} and the { dn ;

Now suppose it is desired to impose a null in the pattern at the location u = u

1
]9
with phase -only perturbations e ™ of the array weights, That is, we would like
to have
N . .
j¢, jd u
Zae"enl=0. (3)
n
n=1

At the same time we wish to minimize the weight perturbations in a least squares

J
sense. Since the perturbation of the nth weight is an(e n_ 1), we wish to minimize
the quantity

N . N
i9 2 0
E ar21|e "ol o=a Z a:sinz(—zﬂ). (4)
n=1

n=1

We claim that the desired phase perturbations are then odd-symmetric with respect
to the phase reference center; that is,

¢n=-'DN_n+l,n=l,2....,N (5)
so that the resulting field pattern remains real. The procedure we will use to prove
Eq. (5) is first to assume that a set of phase perturbations has been found to satisfy
Eq. (3); then to express these phase perturbations as a sum of two sets of perturba-
tions, one with even-symmetry and the other with odd-symmetry; and finally, to
show that a set of odd-symmetric phase perturbations can be constructed that

satisfies Eq. (3) and yields a lower value of the quantity

9
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a_ §sin T
n-1 : i
than the starting set of phase perturbations with an even-symmetric component, .
Accordingly, we begin with a set of phase perturbations, 0., n= 1,2,....N, '.'-';"i
that satisfv Eq. (3), and let o

= = 2
on One’”)no’n 1,2,..., N (6)
where
6 =Lt +o )
ne 2 '"n N-n+1

= 1 .
%0 3% "% - LR
Then
"b.\'—nbl,e s one
n=1,2,..., N (7)
] -9

.\J-n*l,o= no

so that the *One} are the even-symmetric part and { ono} the odd-symmetric part
of the phase perturbations { on} . Substituting kq. (6) in Eq. (3),

N . .

J(one . ono) i ri“uI
S_‘ a_e e =0
o n

n-1

from which it is straightforward to obtain, utilizing the svmmetries of tigs, (1,
(2), and (7), the equation
N N

. 0S8 . - 51 4 Vo=
nzl a_ vos o (.Ob(dnul ono) J nZ] a, sin one cos (dn Ut 00, 0. «(8)

We now note that a purelv odd-svmmetric solution {(sr'm} of Eq. (3) can be

constructed bv defining Or'm to be the solution of the equation

It the number Hf elements in the arrav is dd, the phase »f the center element ix,
of course, zero since this element i~ he phase reference (v the arrav,
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cos one cos(dnu1 + )no) = cos(dnul + ono), n=1 2 ..., N (D)

with the smallest absolute value. (It is clear that a solution of Eq. (9) always
exists since the left hand side of Eq. (9) has magnitude less than or equal to one,)
For the set of phase perturbations so constructed, the terms of the real part of
Eq. (8) remain unchanged and so their sum continues to equal zero, while the
imaginary part of Eq. (8) is zero because all the{d)r;e} are identically equal to zero.
To show that the set of odd-symmetric phase perturbations obtained by solving
Eq. (9) gives a smaller value of the quantity
N
Z a’ sin2 (d)n )

n z

n=1
than the starting set of phase perturbations with both an even- and ocdd-symmetric

component, we first note that in view of Eq. (7) it is sufficient to show, taking the

elements of the array by symmetrically located pairs, that

’
5[0 +9 o .. -9 ¢ )
. 2( “ne no . 2| "ne no |} . . no
sin <—-2—-—) + sin (—-2———>_ 2sm<—2— . (10)
Using the trigonometric identity
2fe\_ 1, _
sin ( )— 3 (1 -cosf)

2

and the formulas for the cosine of a sum and difference of two angles, it is simple
to show that the inequality, (10),is equivalent to the inequality

s
<
cos one cos & = cos °no . (11)

In Appendix A we show that the solution (Dr;o of Eq. (9) with the smallest absolute
value satisfies the inequality, (11), (strict inequality holds unless dnu1 is an
integral multiple of ) and thus complete the proof that the minimum phase-only
perturbations that result in an imposed null at a prescribed location in a real pattern

have odd-symmetry with respect to the reference center of the array.

3. DISCUSSION

The proof of the odd-svmmetry propertv of the minimum phase-only perturba-

1ions we have given above is based on the assumption that there is only one null to
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be imposed in the antenna pattern. If there is more than une imposed null, the P
procedure of the proof does not appear to be capable of generalization. Suppose, N
for example, that nulls are to be imposed at two locations, u i= 1,2 Then, Lo
corresponding to Eq. (8), we now have the pair of equations -
N N .
n;l a, cos One cos(dnui + 'Jno) +j ngl a, sin One ('os(dn u, + Ono) =0 “®
i=1, 2
and there is no way in general that orio can be found to simultaneously satisfy the —
pair of equations ‘®
’ .
COS O Cu (dn u + ono) = cos(dnui+ono), i=1,2
as required by the proof [see Eq. (9)]. It is true that we can find a different set .

of odd-svmmetric phase perturbations 0;0 i = 1, 2 to satisfy each of the equations

’i ’
individually, but the nonlinearity of the phase-only nulling equation, Eq. (3), then

does not allow any simple way of combining the two sets of odd-symmetric phase-

onlv perturbations, one for each null, to give one set of phase perturbations that
will result in nulls at both of the locations simultaneously.

Although the proof we have given cannot be directly generalized to the case of
more than one imposed null, additional evidence can be cited to support the con-
jecture that the minimum phase-only perturbations required to impose nulls in a
real pattern at a prescribed set of locations have odd-symmetry. For one thing,

Shore and Ste'_vskal9 have shown that if the assumption of small phase perturbations

is made and used to linearize the phase-only nulling equation
A J %n ] dn Y .
a e e =0,i=12,.,., M,

n=1 1
the resulting set of equations can be solved exactly analytically subject to the con- :..,
straint that the weight perturbations be minimized ina generalized least squares :
sense, The phases thus obtained are odd-symmetric with respect to the reference
cerier located at the center of the array.

Additional evidence to support the odd-symmetry hypothesis comes from the
use of nonlinear programming techniques14 to calculate the minimum phase -only -.-

14. Shore, R. (to be published, 1983), Phase-Only Nulling as a Nonlinear Program -
ming Problem, RADC-TR-83-37,

12 -
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perturbations required to impose nulls in a pattern at a prescribed set of locations.
It is found that even if no symmetry requirement is placed on the solution so that
there are N unknown phases for an array of N elements, N even, (N -1 if N is odd)
the solution obtained has odd-symmetry and is identical to that obtained if the
assumption of odd~-symmetry is made at the outset to reduce the number of unknown
phases by a factor of one half. A sample output is given in Appendix B,

In further support, in Appendix C it is shown, using the Lagrange multiplier
method, that the minimum phase perturbations satisfy the equation

N

Z ansinq>n=0

n-1

a property consistent with the odd-symmetry hypothesis in view of the even-
symmetry of the[an]assumed throughout [see Eq. (1)].

Thus it appears likely, although as yet unproven in general, that the odd-
symmetry hypothesis is true, and it is hoped that this report will stimulate further
effort to find a general proof.

13
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Appendix A

Proof of a Trigonometric Inequality

In Appendix A we prove that the solution u to the equation

CcOS X CcOSs (2 + y) = cos (z + u) (Al)
with the smallest absolute value satisfies the inequality

COS X COS y € cos u (A2)
with strict inequality holding for all values of z not an integral multiple of 7. Let
x and y be arbitrary angles and consider the behavior of u as a function of z for z
in the interval [-7, 7). Defining cos-l(B) to lie in the interval (0, 7], we see that

there are two solutions of Eq. (A1)

u, (z) = cos-‘ jcos x cos (z + y)] - 2z (A3a)

1

and

|

u, (z) = —cos-l jcos x cos(z + yI] -z . (A3b)

I3
.
TR

.
U
»
[ DO ]
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Since

(-2)=u, (n - 2)

u 1

2
(A4)

u, (~2)

1 uz(n-z)

-

it suffices to consider the behavior of u, (z) and u, (z) for z in the interval [0, 7].
As z increases from 0 to 7, cos x cos (z + y) varies from cos x cos y to

cos x cos (7 + y) = -cos x cos y and correspondingly, cos'1 [cos x cos (z + y)]
varies from cos-1 (cos x cos y) to cos”! (-cos x cos y) = 7~ cos-l (cos x cos y).
Hence u, (z) varie_e.;, from cos™} (cos x c:)ls y) to -cos”! (cos x cos y) while u, (z)
varies from -cos = (cos x cos y) to cos = (cos x cos y) -27. Furthermore, since

d -1
cos (X)) = - —— ,
dx >

differentiating Eqs. (A3a, A3b),

ui(z):t cos x sin (z + y) -1.
2 1- cos2 X <:os2 (z +y)
But
2 .2 2 2 2
cos” x sin” (2 + y) _ cos" x-cos” xcos_(z+y) < 1

1 - cosz X cos2 (z+y) 1 - cos2 X cos2 (z +y)

with equality if and only if 0052 x = 1, Hence if x# Na, N=0, + 1, both uli(z) and
u,y ’(z) are negative over the entire range of z and so uy (z) and u, (z) are mono-
tonically decreasing functions of z. It follows that as z increases from 0 to 7, u, (z)
decreases monotonically from cos ™! (cos x cos y) to -cos ! (cos x cos y) while

uy (z) decreases monotonically from -cos'1 (cos x cos y) to cos-1 (cos x cos y) -271,
(see Figure Al). Hence, in the interval 0=z =7, u=u, (z) is the solution of

- - Eq. (A1) with the smallest absolute value and takes on its largest absolute values
.. at the endpoints of this interval. Since at the endpoints cos u = cos x cos y, it
follows that for all values of z in between, cos x cos y < cos u and so we have

N demonstrated inequality (A2), If x=0
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Figure Al, Plot ot‘u1 (z) = 2 cos'1 |cos x cos (z + y)] - 2,

x=20° v=10° 2

0, z + y in 1st and 2nd quadrants ::E: ;

up (2) = S

-2, z + y in 3rd and 4th quadrants RS

o

-2, z +y in 1st and 2nd quadrants :‘.;

uy (z) = i
0, z ~ vy in 3rd and 4th quadrants

while if x = + 7,

0, z + y in 3rd and 4th quadrants
uj (2) =

-2, z + y in 1st and 2nd quadrants

-2, z +y in 3rd and 4th quadrants
’

u, (z) =
0, z + y in 1st and 2nd quadrants

and the inequality (A2) remains true as before, the only difference being that
equality holds over an interval of z instead of at just the endpoints of the interval
0<z " n Inthe interval -7 <2 < 0, we choose u = uy (z) and use Eq. (A4) and the
above results for 0 < z < 7 to demonstrate inequality (A2), (see Figure A1),
Thus the proof is complete,

19

PAP PP, PGP L s R W M. SIS S - PRSI S NP SR SR PR WL AP G WP RPN S L B B s, o PR S S =




F'.':"i-'.‘.' VLR e N R T e e T R N T R CC A L I R [N - Lot ow e s e e T e e e e -.".‘.';T
D e o S R s B - P . . - . - - .
.

Appendix B

Minimum Phase Perturbations Calculated
by Nonlinear Programming

As an example of the odd-symmetry of the phases obtained as a nonlinear pro-
gramming solution of the minimum phase-only weight perturbation problem, we show
results for a 21-element uniform amplitude array with half-wavelength spacing
The locations of the imposed nulls are 12, 15, and 18 degrees, The nonlinear
programming computer code LF’NLP15 was used. When no symmetry requirement
was imposed on the solution, the phases obtained are (in radians)

X VALUES, X(1),..., X(N)
0.568771D+00 0.369075D+00 -0,275962D+00 -0,329874D+00 -0.146163D+00
0.512306D-01 0.152084D+00 0,695103D-01 -0.890314D-01 -0, 103123D+00
0.103123D+00 0.890314D-01 -0.695103D-01 -0. 152084D+00 -0.512906D-01
0.146163D+00 0.329874D+00 0.275962D+00 -0.369075D+00 -0,568771D+00

The first two rows are rbl through 9,, while the second two rows are .9 through
1’2 1 (¢11 = 0 since the 11th element is the phase reference,) The odd=symmetry
of the solution is apparent, If odd-symmetry is imposed as a requirement on the
solution from the outset and the number of unknown phases halved, the output is

15. Pierre, D.A., and Lowe, M. J. (1975) Mathematical Programming Via

Augmented Lagranﬁians: An Introduction W1 omputer Programs
A_d'glson-WesIey ublishing Co., Reading, Massachusetts.
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} X VALUES, X(1)...., X(N)

. 0.568771D+00 0. 369075D+00 -0.275962D+00 -0, 3249874D+00 -0, 1461631)+00 .
0.512906D-01 0.152084D+00 0. 695103D-01 -0,890314D-01 -0,10312313+00

which agrees perfectly with the former solution. The null depths corresponding to
these solutions are < -220 dB, - —
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Appendix C
Proof That the Minimum Phase Perturbations
N

Satisfy the Equation “Z" a, sin o, =0

In Appendix C we use the Lagrange multiplier technique to show that the mini-

mum phase perturbations required to place nulls at the set of prescribed pattern
- locations u,, k=1, 2,..., M, have the property that
< N
- 21 a sing =0. (C1)

- n

Kk’

From the theory of constrained optimization, 16 a necessary condition for a
~ local minimum of a function f(i’ subject to a set of equality constraints
-' (~k(§) =0, k=1,2,..., M, is that the gradient of f be a linear combination of the
gradients of the constraint functions; that is
M

V [(x*) = kzl )k v (-k(i*) (C2)
where x* denotes the value of the vector of variables at the local minimum. The
multipliers in this linear combination are referred to as lL.agrange multipliers and

the superscript * indicates that they are associated with the point x*,

.. 16. Fletcher, R, (1981) Practical Methods of Optimization. Volume 2,
= Constrained Optimization, John Wilev and Sons, New Yorl,
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Here
N
[o}
N B L2 n
fQ) = Z a_ sin <-—2—)
n=1
and the constraints are [see Eq. (3)]
N
nz=:l a, cos(dn u + on) =0
k=1,2,..., M (C3)
N
ngl a, Sln(dnlk + q;n) =0.

Taking the gradients of f and the constraint functions, and equating components in
Eq. (C2) yields

M M
) 1 .
a_ sin ¢n = 4 kz:l Ak a, sm(dn u + (pn) + kz:l e anCOS(dn U+ ¢n)

Summing over n and using Eqs. (C3) then gives Eq. (C1).
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